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1 INTRODUCTION
Generating synthetic data is an attractive method for conducting

private analysis of a sensitive dataset. It allows analysts to run their

own non-private algorithms on the synthetic dataset without hav-

ing to pre-specify the analyses they wish to perform. Further, both

the dataset and any statistical results can be freely disseminated

without incurring additional privacy loss. The goal of synthetic

data generation is create data that will perform similarly to the

original dataset for many analysis tasks.

In this working paper, we propose using a Differentially Private

Generative Adversarial Network (DP-GAN) to generate private

synthetic data. DP-GANs are a variant of Generative Adversarial

Networks that are trained privately. GANs were first proposed by

Goodfellow et al. [4], and there has since been a tremendous amount

of research employing GANs to generate synthetic data. DP-GANs

have recently been used for privately generating clinical trial data

[2] and image datasets [8, 9]. We build off of previous work on

DP-GANs and add further optimizations to enhance performance

on wide variety of data types and analysis tasks. We also propose

empirical validation of our algorithm’s performance as future work.

2 BACKGROUND ON GANS
GANs are a type of generative model in which two neural networks,

commonly known as the Generator (Gy ) and Discriminator (Dw ),

are trained against each other in a zero-sum game. These neural

networks are parameterized by their edge weights—y and w for

Gy and Dw , respectively—which specify the function computed by

each network.

The Generator takes as input a random vector drawn from a

known distribution, and produces a new datapoint that (hopefully)

has a similar distribution to the true data distribution. If we are

given a finite-size database, then the true data distribution can be

interpreted as the empirical distribution that would arise from sam-

pling entries of the database with replacement. The Discriminator

then tries to detect whether this new datapoint is from the Gener-

ator or from the true data distribution. If the Discriminator is too

successful in distinguishing between the Generator’s outputs and

the true data, then this feedback is used to improve the Generator’s

data generation process.
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We want to train Dw to maximize the probability of assigning

right labels, whereas Gy should minimize the difference between

its output distribution and true data distribution. The value of this

two player zero-sum game between Gy and Dw can be written as

following min-max optimization problem:

min

y
max

w
O (y,w ) := Ex∼pdata [log(Dw (x ))]+Ez∼pz [log(1−Dw (Gy (z)))],

where p
data

is true data distribution and pz is a known noise distri-

bution. In themin-max form of the game,Dw choosesw to maximize

O (y,w ) and Gychooses y to minimize O (y,w ). Their equilibrium
strategies will achieve objective value miny maxw O (y,w ). How-
ever, since O (y,w ) is a non-convex non-concave objective, these

optimal strategies are typically not efficiently computable. Instead,

we use gradient descent/ascent schemes to allow Dw and Gy to iter-

atively learn their optimal strategies.

We estimate the function and its gradients by sampling ran-

dom elements from pz and p
data

. Let {z1, . . . , zm } and {x1, . . . ,xm }
respectively be random samples from pz from p

data
. We write

Oi (y,w ) := log(Dw (xi )) + log(1 − Dw (Gy (zi ))) as i-th sampled

function, and take the average value over the m samples to get

estimate of O :

O
sample

(y,w ) =
1

m

m∑
i=1

Oi (y,w ).

Nextwe take the gradientwith respecty andw :дy := ∇yOsample
(y,w )

and дw := ∇wOsample
(y,w ). Since the input data were randomly

sampled, these are stochastic gradients. Finally, we do the gradi-

ent update step, with gradient ascent for D, w ← w + ηwдw , and
gradient descent for G, y ← y − ηyдy , for step sizes ηw and ηy .
This update process repeats either until the parameters converge

or until a pre-specified number of update steps have occurred.

3 BACKGROUND ON DP-GANS
The original DP-GAN algorithm was proposed for private deep

learning by Abadi et al. [1]. The algorithm privately trains the Dis-

criminator because that neural network has access to the true data.

The Generator only receives feedback about the true data through

the Discriminator’s output, and therefore will also be differentially

private by post-processing.

In this algorithm, the Discriminator’s stochastic gradient descent

step is privatized by adding a gradient clipping and noise addition

step. The algorithm clip gradientдw to ensure that its norm is upper

bounded by some constant C . We call this clipped gradient дclip,w .

This clipping ensures an upper bound of C on magnitude of the
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gradient and hence the sensitivity of the update is at most C . To
ensure differential privacy, the Gaussian Mechanism with variance

σ is applied to дclip,w to get a noisy clipped gradient дnoise,clip,w .

Finally, the parameterw is updated via gradient ascent using the

noisy clipped gradient:w ← w + ηwдnoise,clip,w .

The algorithm of Abadi et al. [1] is differentially private, and

makes use of a moments accountant to give even tighter privacy

bounds than can be achieved through advanced composition. Sup-

pose we choose σ =
√
2 log

1.25
δ /ϵ then each update is (ϵ,δ )-

differentially private. AfterT updates, advanced composition would

give (O (ϵ
√
Tk log(1/δ ′)),Tkδ + δ ′)-differential privacy. Using the

moments accountantmethod, the overall algorithm is (O (qϵ
√
Tk ),δ )-

differentially private for q = m/n < 1. Relative to advanced com-

position, this saves a factor of

√
log(1/δ ′) in the ϵ-parameter and

factor of Tk in the δ .

Theorem 3.1 ([1]). There exist constants c1 and c2 so that given
the sampling probability q =m/n and the number of iterationsT , for
any ϵ < c1q

2T , Algorithm 1 is (ϵ,δ )-differentially private for any
δ > 0 if we choose

σ ≥ c2
q
√
T log(1/δ )

ϵ

In practice, this algorithm performs well. For example withm =
0.01n,σ = 4,δ = 10

−5
and T = 10000, we have ϵ ≈ 1.26.

4 OPTIMIZATION TECHNIQUES TO
IMPROVE ACCURACY

In this section, we summarize a number of techniques that can

be used to improve the privacy-accuracy frontier for DP-GANs.

These techniques are all combined with the DP-GAN framework

in Algorithm 1.

4.1 Smart clipping
Different parameters in a neural network may have gradients of dif-

ferent scale, and hence ought to be clipped and injected with noise

differently. This is particularly relevant for gradient coordinates

that are small in magnitude, as adding relatively large amounts

of noise to these coordinates may significantly harm accuracy. To

address this, we use smart clipping techniques introduced in [9] to

group gradient coordinates according to their relative magnitude,

and add noise that only scales with the maximum magnitude in the

group. Note that this is a grouping of parameters and not private

data entries. Each group is clipped and the corresponding gradient

is made appropriately noisy, so the update will remain private with

respect to the true data. The grouping of parameters is determined

dynamically in each inner loop of training by continuously main-

taining the magnitude of each gradients, then performing clustering

on those parameters.

We also adaptively choose the amount of clipping over time,

which further improves accuracy and convergence rate. For each

group of parameters in a given iteration, the amount of clipping

is set to be the average of gradients of those parameters in the

previous step.

4.2 Warm starting
Second, motivated by the observation that GANs tend to be unsta-

ble at the beginning of its training, previous work [9] has proposed

to warm-start the DP-GAN by treating a small portion of the data

(≈ 2%) as public and use them to train the GAN non-privately.

Zhang et al. [9] showed that this techniques improves accuracy by

about 15% for standard statistical measures in machine learning.

However, releasing even a small subset of sensitive data may raise

legal or ethical concerns. Instead, we propose using publicly avail-

able data. As long as this public data is statistically similar to the

sensitive data, it will provide the same accuracy improvements as

subsampling. An analyst could similarly use domain knowledge or

personal experience as a warm-start for DP-GAN.

4.3 Improved privacy via privacy accountant
The amount of noise added in each iteration is itself a random vari-

able that depends on amount of gradient clipping and the grouping

of parameters, which vary in each iteration based on previous ran-

dom gradients. Therefore, directly applying advanced composition

theorem on the general bound of noise added to gradients will re-

sult in a loose privacy bound. Intuitively, we should apply advanced

composition theorem to the actual noise added to gradients. We

keep track of our accumulated privacy loss using the privacy ac-

countant of Abadi et al. [1], which relies on analysis of composing

probabilities directly on the sequence of possible outcomes over

iterations, rather than composing the sequence of privacy losses

over iterations.

4.4 Task-specific optimization techniques
It is observed that, without further optimization, the loss function

used for training DP-GANs converges (decreases) significantly at

the start, but no longer consistently decreases in further training

due to injected noise [2]. Instead, the loss varies within the range

even after many epochs (outer iterations) of training. The problem

is, then, how to choose the right parameters of DP-GAN from many

epochs, when most of them perform within a range of accuracy?

One method is to evaluate those parameters over many epochs

with respect to a machine learning task of interest, then pick ones

with top performance. We can still maintain privacy of the overall

algorithm by using Report Noisy Argmax to pick the parameters.

We will first reserve some true data to privately train the ap-

propriate model (e.g., random forest model for clustering) up to

some satisfactory accuracy on the true data. We will then check

the accuracy of this model on synthetic data generated from the

generator at each outer iteration. Formally, let A denote the analy-

sis task at hand, which takes in a dataset and outputs a classified.

Let B be an accuracy evaluation task that takes in a classifier and

labeled data (test data or holdout set) and output the accuracy of

the classifier on the data. After training the DP-GAN for T epochs,

we have a collection of T sets of DP-GAN generator parameters

Gt
for t = 1, 2, . . . ,T . For each t = 1, 2, . . . ,T , run algorithm A on

synthetic datasetUt generated byGt
to obtain a trained model θt .

Then test the accuracy of θt on a holdout set of the the true data

using algorithm B to obtain accuracy level αt . Finally, we choose a
small set Q ⊂ [T ] of the epochs by running Report Noisy Argmax

on the set {α1, . . . ,αT } without replacement. The final synthetic

2



Differentially Private Synthetic Data Generation via GANs TPDP ’18, October 2018, Toronto, Canada

data S is generated by a combination of models: for each t ∈ Q ,
use Gt

to generate a dataset St of |S |/|Q | data points for desired
size |S | of the synthetic dataset. The final dataset is their union

S :=
⋃
t ∈Q St .

The algorithmic framework above applies to any analysis tasks

including clustering and regression. For unlabelled data, such as

for a clustering task, we can run the algorithm B on the holdout set

and Gt
, and measure the difference in performance with respect

to some appropriate problem-specific metric. Alternatively, we can

use statistical scores (e.g., Jensen-Shannon scores) which does not

require any task to be specified, thus allowing for accuracy im-

provements in the task-independent setting as well. Then, we can

proceed to choose Q by Report Noisy Argmax as usual.

4.5 GAN architecture for new data types
GANs have been recognized in machine learning for their ability

to generate synthetic image data. In this section, we cite relevant

existing work on the development of GANs for other types of data,

and suggest our own ideas to utilize them in our DP-GAN.

Continuous data. Real-valued data is easily handled by neural

networks and thus DP-GANs as well. See, for example, the success

of using DP-GANs to generate clinical data, whose features are

blood pressures of subjects over multiple visits [2].

Binary Data. It is folklore that neural networks are especially
strong at classification tasks, relative to regression tasks. This is

because classification can be thought of as a special and easier

case of regression, where the output is restricted to specific set of

numbers, e.g., {0, 1} for binary-classification. For such a task, the

output layer node generally has a perceptron activation which gives

much clearer error signal for the back-propagation algorithm that

calculates gradients. See [3] for a successful example of generating

binary data in medical records.

Discrete-Valued Data. Motivated by the success of GANs in han-

dling binary data, we propose encoding discrete data with small

values (e.g., values below 15) as short binary strings, and treat dis-

crete data with larger values as real-valued entries. We will round

the synthetically generated data points to their nearest allowable

integer value if they fall outside of the valid range.

Categorical Data. Categorical data can be handled with a newly-

developed GAN architecture [5, 6] using the Gumbel-softmax func-

tion, which is a continuous approximation of multinomial distribu-

tion parameterized by a softmax function. We plan to incorporate

this into our DP-GAN to handle categorical data.

Geo-spatial data. Geospatial data can be pre-processed by en-

coding geographical location as a two-dimensional real-valued at-

tribute containing latitude and longitude. If the geospatial attribute

describes a region (e.g., city or neighborhood), we can either ran-

domly sample a point within that region or chose the center of

the region. Once the attribute has been made numerical, we can

use auxiliary information to post-process and improve accuracy.

For example, if a randomly generated address appears in a body of

water, that should be projected to a nearby location on land.

Graphs. GANs have recently been used to generate synthetic

graphs by embedding the graph compactly into vectors specifically

designed for GANs [7]. Our DP-GAN can also use this embedding

techniques to privately generate synthetic graphs that share the

same statistical properties as the original graph. This will allow

private analysis of research questions such as link prediction, com-

munity detection, and influence maximization.

Algorithm 1 Minibatch SGD Algorithm For training DP-GANs

Input parameters: number of data samples in private training

data n; public datasetD
public

; number of inner iterations k ; learn-
ing rates ηy ,ηw ; minibatch sizem; minibatch size for public data

m
public

; noise scale σ ; number of parameter groups l ; privacy
budget (ϵ0,δ0).
while y has not converged do

for k steps do
Run SGD-Batch(D

public
,ηw ,mpublic

, l )
end for
sample minibatch ofm noise samples {z1, . . . , zm } from pz
compute stochastic gradient дy
update generator,Gy , by descending along stochastic gradient

y ← y − ηyдy

query moments accountant with σ , ϵ0,q(= m/n),k,T where

T is current number of outer iteration

δ ← exp

{
−

σ 2ϵ2
0

c2
2
q2Tk

}
if δ > δ0 then

break

end if
end while
Note: Instead of using the standard gradient-based update

rule, one can use momentum-based methods for gradient de-

scent/ascent steps, which are faster and more convenient to use

in practice.

3
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Algorithm 2 SGD-Batch

Input parameters: public dataset D
public

; learning rate ηw ;
minibatch size for public data m

public
; number of parameter

groups l .

sample minibatch ofm
public

noise samples {zi }
mpublic

i=1 from pz

sample minibatch ofm
public

data samples {x i }
mpublic

i=1 fromD
public

compute corresponding gradient for each datapoint {д
(i )
w }

mpublic

i=1
where

д
(i )
w := ∇wOi (y,w )

group parameterw into l groups: {G j }
l
j=1, usingweight clustering

{(G j , c j )}
l
j=1 ← weight-clustering(l , {д

(i )
w }

mpublic

i=1 ) (1)

sample minibatch ofm data samples {x1, . . . ,xm } from p
data

sample minibatch ofm noise samples {z1, . . . , zm } from pz
compute stochastic gradient дw
clip gradient дw according to grouping (G j , c j ) obtained from

weight clustering

дw, (j ) ← (дw ∩G j ), for j = 1, . . . , l (2)

дw, (j ) ← дw, (j ) min(1, c j/∥дw, (j ) ∥), for j = 1, . . . , l (3)

add corresponding noise in the clipped gradient groups

дw, (j ) ← дw, (j ) +N (0,σc j I), for j = 1, . . . , l

update discriminator,Dw , by ascending along stochastic gradient

w j ← w j + ηwдw, (j ) , for j = 1, . . . , l

w ← {w j }
l
j=1

5 PROPOSED EMPIRICAL EVALUATION
Our next step in this research agenda will be to implement and test

the performance of the DP-GAN in Algorithm 1. The algorithm

primarily combines existing techniques for improving the accuracy

of DP-GANs.Wewill want to show that combining these techniques

significantly improves accuracy over using any single technique

alone.

Integrated Public Use Microdata Series (IPUMS) is one of the

largest population databases available online, consisting of his-

torical samples from both United States and international census

records. Census extracts include a wide variety of selectable at-

tributes, spanning numerical, categorical, and geospatial data types.

Recently IPUMS put forth a preliminary data release of the 1940

United States full census extract consisting of approximately 130

million entries. This included demographic, economic, and location

information on both the household and individual level, including

attributes representing income, race, and census district. Given the

recency of its release, it has been relatively unexplored by external

regression, classification, and clustering analyses, leaving much

room for novel investigation.

We believe this to be an interesting and ideal use case for several

reasons. Firstly, GANs generally perform with higher accuracy as

the number of samples increases. We hypothesize that with 130

million entries, the full census extract will be sufficiently large

for our model to approximate the underlying distribution of data

with high accuracy. Secondly, given that the census attributes span

numerical, categorical, and geospatial data types, it represents a

instance commonly faced in practice where data types vary, and a

situation that our techniques are intended to address. Finally, given

the U.S. Census Bureau’s commitment to implementing differential

privacy in the 2020 Census, this can serve as a testbed for private

and accurate analysis of sensitive Census microdata.
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